Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 20(2)2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2230438

ABSTRACT

The dominant SARS-CoV-2 Delta variant (B.1.617.2) became the main circulating variant among countries by mid 2021. Attention was raised to the increased risk of airborne transmission, leading to nosocomial outbreaks even among vaccinated individuals. Considering the increased number of COVID-19 hospital admissions fueled by the spread of the variant, with Spain showing the highest COVID-19 rates in mainland Europe by July 2021, the aim of this study was to assess SARS-CoV-2 environmental contamination in different areas of a University Hospital in the region of Castile-León, Spain, during the peak of the 5th wave of COVID-19 in the country (July 2021). Air samples were collected from sixteen different areas of the Hospital using a Coriolis® µ air sampler. Surface samples were collected in these same areas using sterile flocked plastic swabs. RNA extraction followed by a one-step RT-qPCR were performed for detection of SARS-CoV-2 RNA. Of the 21 air samples, only one was positive for SARS-CoV-2 RNA, from the emergency waiting room. Of the 40 surface samples, 2 were positive for SARS-CoV-2 RNA, both from the microbiology laboratory. These results may be relevant for risk assessment of nosocomial infection within healthcare facilities, thus helping prevent and minimize healthcare staff's exposure to SARS-CoV-2, reinforcing the importance of always wearing appropriate and well-fit masks at all times and proper PPE when in contact with infected patients.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Spain/epidemiology , RNA, Viral , Hospitals, University
2.
One Health ; 15: 100405, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1867641

ABSTRACT

Wastewater-based epidemiology has shown to be a promising and innovative approach to measure a wide variety of illicit drugs that are consumed in the communities. In the same way as for illicit drugs, wastewater-based epidemiology is a promising approach to understand the prevalence of viruses in a community-level. The ongoing coronavirus disease 2019 (COVID-19) pandemic created an unprecedented burden on public health and diagnostic laboratories all over the world because of the need for massive laboratory testing. Many studies have shown the applicability of a centralized wastewater-based epidemiology (WBE) approach, where samples are collected at WWTPs. A more recent concept is a decentralized approach for WBE where samples are collected at different points of the sewer system and at polluted water bodies. The second being particularly important in countries where there are insufficient connections from houses to municipal sewage pipelines and thus untreated wastewater is discharged directly in environmental waters. A decentralized approach can be used to focus the value of diagnostic tests in what we call targeted-WBE, by monitoring wastewater in parts of the population where an outbreak is likely to happen, such as student dorms, retirement homes and hospitals. A combination of centralized and decentralized WBE should be considered for an affordable, sustainable, and successful WBE implementation in high-, middle- and low-income countries.

SELECTION OF CITATIONS
SEARCH DETAIL